

 Navigation

 	
 index

 	
 next |

 	Maxon Epos Library 0.1 documentation

Welcome to Maxon Motors Epos Library’s documentation!

	Date:	28 Dec 2016

	Version:	0.1

	Author:	Bruno Tibério

	Contact:	bruno.tiberio@tecnico.ulisboa.pt

This documentation describes the class Epos of developed for Matlab(tm) to control
with the Maxon Motors EPOS 70/10 device.

Contents:

	Epos Class
	Methods
	begin

	disconnect

	writeBYTE

	writeWORD

	readBYTE

	readWORD

	readAnswer

	CRCcalc

	CRCCheck

	sendCom

	readObject

	writeObject

	checkError

	checkEposError

	checkEposState

	changeEposState

	readStatusWord

	printStatusWord

	readControlWord

	printControlWord

	readSWversion

	readPositionModeSetting

	setPositionModeSetting

	readVelocityModeSetting

	setVelocityModeSetting

	readCurrentModeSetting

	setCurrentModeSetting

	readOpMode

	setOpMode

	printOpMode

	setMotorConfig

	readMotorConfig

	printMotorConfig

	setSensorConfig

	readSensorConfig

	printSensorConfig

	readCurrentControlParam

	setCurrentControlParam

	printCurrentControlParam

	readSoftwarePosLimit

	setSoftwarePosLimit

	printSoftwarePosLimit

	readMaxProfileVelocity

	setMaxProfileVelocity

	readProfileVelocity

	setProfileVelocity

	readProfileAcceleration

	setProfileAcceleration

	readProfileDeceleration

	setProfileDeceleration

	readQuickstopDeceleration

	setQuickstopDeceleration

	readMotionProfileType

	setMotionProfileType

	readPositionProfileConfig

	setPositionProfileConfig

	printPositionProfileConfig

	readTargetPosition

	setTargetPosition

	setPositioningControlOptions

	haltOperation

	resumeHaltOpereation

	readVelocityControlParam

	setVelocityControlParam

	printVelocityControlParam

	readPositionControlParam

	setPositionControlParam

	printPositionControlParam

	readFollowingError

	readMaxFollowingError

	setMaxFollowingError

	readPositionValue

	readPositionWindow

	setPositionWindow

	readPositionWindowTime

	setPositionWindowTime

	readVelocityValue

	readVelocityValueAveraged

	readCurrentValue

	readCurrentValueAveraged

	readHomeOffset

	setHomeOffset

	save

 Copyright 2017, Bruno Tibério.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Maxon Epos Library 0.1 documentation

Epos Class

	
class Epos(debug_flag)

	EPOS Constructor

If debug flag is active, it reports communications between PC and
Epos device

	Args:

	

	debug_flag [optional]:

		A boolean. If true, hexadecimal messages are displayed.

	Returns:

	An object of the class Epos.

Examples:

epos = Epos();

epos = Epos(1);

If debug flag is used the format is changed for ‘hex’ for easier understanding. See help format.

Methods

begin

	
begin(devname, Baud)

	Connects to Epos device

Establish the connection to EPOS via RS232 connection
Sets connected if configuration was sucessfull or not.

	Args:

	

	devname:	Portname for the device (example: ‘/dev/ttyUSB0’).

	Baud [optional]:

		baudrate for the communication (default 115200).

	Returns:

	

	OK:	a boolean if all resquests were sucessfull or not.

disconnect

	
disconnect()

	Disconnect device

Closes epos port and sets format to short (default matlab) if debug
flag was used.

writeBYTE

	
writeBYTE(myByte)

	Send a byte to epos

	Args:

	

	myByte:	byte to be sent to epos device

	Returns:

	

	OK:	a boolean if write was sucessfull or not

writeWORD

	
writeWORD(myWord)

	Send a word (2bytes) to Epos device

	Args:

	

	myWord:	word to be sent to epos device

	Returns:

	

	OK:	a boolean if write was sucessfull or not

readBYTE

	
readBYTE()

	read a byte from epos

	Returns:

	

	myByte:	byte read from epos

	OK:	a boolean if write was sucessfull or not

readWORD

	
readWORD()

	read a word from epos.

	Returns:

	

	myWord:	word read from epos

	OK:	a boolean if write was sucessfull or not

readAnswer

	
readAnswer()

	read an answer from a request

	Returns:

	

	answer:	answer from previous request.

	NumWords:	number of words in answer.

CRCcalc

	
CRCcalc(DataArray, CRCnumberOfWords)

	calculate 16 bit CRC checksum

CRCcalc calculates the CRC of frame message, wich is made of:
[header][DATA][CRC = 0]

For correct crc calculation, the last word (CRC field) must be zero.

	Args:

	

	DataArray:	frame to be checked

	CRCnumberOfWords:

		number of words (word = 2 bytes) present in frame

	Returns:

	

	CRC_OK:	a boolean if crc is match or not

CRCCheck

	
CRCCheck(DataArray)

	check if crc is correct

CRCCheck extracts the CRC received on message (last word of
array) replaces it to zero and calculates the new crc over all
array. After it compares value received with the new one
calculated.

	Args:

	

	DataArray:	frame to be checked.

	Returns:

	

	CRC_OK:	a boolean if crc is match or not.

sendCom

	
sendCom(DataArray, numWords)

	send command to EPOS

Send command to EPOS, taking care of all necessary ‘ack’ and
checksum tests.

	Args:

	

	DataArray:	frame to be sent.

	numWords:	number of words present in the frame

	Returns:

	

	OK:	boolean if all went ok or not

readObject

	
readObject(index, subindex)

	reads an object from dictionary

Request a read from dictionary object referenced by index and subindex.

	Args:

	

	index:	reference of dictionary object index

	subindex:	reference of dictionary object subindex

	Returns:

	

	answer:	message returned by EPOS or empty if unsucessfull

	OK:	boolean if all went ok or not

writeObject

	
writeObject(index, subindex, data)

	write an object to dictionary
Request a write to dictionary object referenced by index and subindex.

	Args:

	

	index:	reference of dictionary object index

	subindex:	reference of dictionary object subindex

	data:	array to be stored in object

	Returns:

	

	answer:	message returned by EPOS or empty if unsucessfull

	OK:	boolean if all went ok or not

checkError

	
checkError(E_error)

	Check if any error occurred in message received

When you send a request to EPOS, the returned response frame, contains a
data field wich stores information of errors if any. The corresponding
message of error explaining it is printed.

	Args:

	

	E_error:	error data field from EPOS

	Returns:

	

	anyError:	boolean representing if any error happened.

checkEposError

	
checkEposError()

	check if EPOS device is with any fault

Request current ErrorHistory object and list the errors if any present.

	Returns:

	

	listErrors:	cellstr containing errors found or “No Errors”

	anyError:	boolean representing if any error happened.

	OK:	boolean if request was sucessfull or not.

checkEposState

	
checkEposState()

	check current state of Epos

Ask the StatusWord of EPOS and parse it to return the current state of
EPOS.

	State
	ID
	Statusword [binary]

	Start
	0
	x0xx xxx0 x000 0000

	Not Ready to Switch On
	1
	x0xx xxx1 x000 0000

	Switch on disabled
	2
	x0xx xxx1 x100 0000

	ready to switch on
	3
	x0xx xxx1 x010 0001

	switched on
	4
	x0xx xxx1 x010 0011

	refresh
	5
	x1xx xxx1 x010 0011

	measure init
	6
	x1xx xxx1 x011 0011

	operation enable
	7
	x0xx xxx1 x011 0111

	quick stop active
	8
	x0xx xxx1 x001 0111

	fault reaction active (disabled)
	9
	x0xx xxx1 x000 1111

	fault reaction active (enabled)
	10
	x0xx xxx1 x001 1111

	Fault
	11
	x0xx xxx1 x000 1000

see section 8.1.1 of firmware manual for more details.

	Returns:

	

	state:	string with current EPOS state.

	ID:	numeric identification of the state

	OK:	boolean if corrected received status word or not

changeEposState

	
changeEposState(state)

	Change Epos state using controlWord object

To change Epos state, a write to controlWord object is made.

The bit change in controlWord is made as shown in the following table:

	State
	LowByte of Controlword [binary]

	shutdown
	0xxx x110

	switch on
	0xxx x111

	disable voltage
	0xxx xx0x

	quick stop
	0xxx x01x

	disable operation
	0xxx 0111

	enable operation
	0xxx 1111

	fault reset
	1xxx xxxx

see section 8.1.3 of firmware for more information

	Args:

	

	state:	string with state witch we want to switch.

	Returns:

	

	OK:	boolean if all went ok and no error was received.

readStatusWord

	
readStatusWord()

	reads current status word object

Ask Epos device for the current status word object. If a correct
request is made, the status word is placed in answer.

	Returns:

	

	answer:	Corresponding status word, ‘error’ if request was
sucessful but an error was returned or empty if request
was not sucessfull.

	OK:	A boolean if all requests went ok or not.

printStatusWord

	
printStatusWord()

	Print the meaning of the current status word.

readControlWord

	
readControlWord()

	reads current control word object

Ask Epos device for the current control word object. If a correct
request is made, the control word is placed in answer. If not, an answer
will be empty

	Returns:

	

	answer:	Corresponding control word, ‘error’ if request was
sucessful but an error was returned or empty if request
was not sucessfull.

	OK:	A boolean if all requests went ok or not.

printControlWord

	
printControlWord()

	Print the meaning of the current control word.

readSWversion

	
readSWversion()

	Reads Software version object

Ask Epos device for software version object. If a correct
request is made, the software version word is placed in answer. If
not, an answer will be empty

	Returns:

	

	answer:	Corresponding software version, ‘error’ if request was
sucessful but an error was returned or empty if request
was not sucessfull.

	OK:	A boolean if all requests went ok or not.

readPositionModeSetting

	
readPositionModeSetting()

	Reads the setted desired Position

Ask Epos device for demand position object. If a correct
request is made, the position is placed in answer. If
not, an answer will be empty

	Returns:

	

	position:	the demanded position value [qc].

	OK:	A boolean if all requests went ok or not.

setPositionModeSetting

	
setPositionModeSetting(position)

	Sets the desired Position

Ask Epos device to define position mode setting object.

	Args:

	

	position:	the demanded position value [qc]

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readVelocityModeSetting

	
readVelocityModeSetting()

	reads the setted desired velocity

Ask Epos device for demand velocity object. If a correct
request is made, the velocity is placed in answer. If
not, an answer will be empty

	Returns:

	

	velocity:	Corresponding device name, ‘error’ if request was
sucessful but an error was returned or empty if request
was not sucessfull.

	OK:	A boolean if all requests went ok or not.

setVelocityModeSetting

	
setVelocityModeSetting(velocity)

	Sets the desired velocity

Ask Epos device to set velocity mode setting object.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readCurrentModeSetting

	
readCurrentModeSetting()

	Reads the setted desired current

Ask Epos device for demand current object. If a correct
request is made, the current is placed in answer. If
not, an answer will be empty

	Returns:

	

	current:	Corresponding device name, ‘error’ if request was
sucessful but an error was returned or empty if request
was not sucessfull.

	OK:	A boolean if all requests went ok or not.

setCurrentModeSetting

	
setCurrentModeSetting(current)

	Sets the desired current

Ask Epos device to store current mode setting object.

	Args:

	

	current:	current value to be set [mA]

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readOpMode

	
readOpMode()

	Reads the operation mode object

	Returns:

	

	opMode:	current opMode of EPOS.

	OK:	A boolean if all requests went ok or not.

setOpMode

	
setOpMode(opMode)

	Set the operation mode

Sets the operation mode of Epos. OpMode is described as:

	OpMode
	Description

	6
	Homing Mode

	3
	Profile Velocity Mode

	1
	Profile Position Mode

	-1
	Position Mode

	-2
	Velocity Mode

	-3
	Current Mode

	-4
	Diagnostic Mode

	-5
	MasterEncoder Mode

	-6
	Step/Direction Mode

	Args:

	

	opMode:	the desired opMode.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

printOpMode

	
printOpMode()

	Prints the current operation mode.

setMotorConfig

	
setMotorConfig(motorType, currentLimit, maximumSpeed, polePairNumber)

	Sets the configuration of the motor parameters. The valid motor type is:

	motorType
	value
	Description

	DC motor
	1
	brushed DC motor

	Sinusoidal PM BL motor
	10
	EC motor sinus commutated

	Trapezoidal PM BL motor
	11
	EC motor block commutated

The current limit is the current limit is the maximal permissible
continuous current of the motor in mA.
Minimum value is 0 and max is hardware dependent.

The output current limit is recommended to be 2 times the continuous
current limit.

The pole pair number refers to the number of magnetic pole pairs
(number of poles / 2) from rotor of a brushless DC motor.

The maximum speed is used to prevent mechanical destroys in current
mode. It is possible to limit the velocity [rpm]

Thermal winding not changed, using default 40ms.

	Args:

	

	motorType:	value of motor type. see table behind.

	currentLimit:	max continuous current limit [mA].

	maximumSpeed:	max allowed speed in current mode [rpm].

	polePairNumber:	number of pole pairs for brushless DC motors.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readMotorConfig

	
readMotorConfig()

	Read the current motor configuration

Requests from EPOS the current motor type and motor data.
The motorConfig is an struture containing the following information:

	motorType - describes the type of motor.

	currentLimit - describes the maximum continuous current limit.

	maxCurrentLimit - describes the maximum allowed current limit.
Usually is set as two times the continuous current limit.

	polePairNumber - describes the pole pair number of the rotor of
the brushless DC motor.

	maximumSpeed - describes the maximum allowed speed in current mode.

	thermalTimeConstant - describes the thermal time constant of motor
winding is used to calculate the time how long the maximal output
current is allowed for the connected motor [100 ms].

If unable to request the configuration or unsucessfull, an empty
structure is returned. Any error inside any field requests are marked
with ‘error’.

	Returns:

	

	motorConfig:	A structure with the current configuration of motor

	OK:	A boolean if all went as expected or not.

printMotorConfig

	
printMotorConfig()

	Print current Motor configuration

setSensorConfig

	
setSensorConfig(pulseNumber, sensorType, sensorPolarity)

	Change sensor configuration

Change the sensor configuration of motor. Only possible if in disable state
The encoder pulse number should be set to number of counts per
revolution of the connected incremental encoder.
range : [16-7500]

sensor type is described as:

	value
	description

	1
	Incremental Encoder with index (3-channel)

	2
	Incremental Encoder without index (2-channel)

	3
	Hall Sensors (Remark: consider worse resolution)

sensor polarity is set by setting the corresponding bit from the word:

	Bit
	description

	15-2
	Reserved (0)

	1
	Hall sensors polarity 0: normal / 1: inverted

	0
	Encoder polarity 0: normal
1: inverted (or encoder mounted on motor shaft side)

	Args:

	

	pulseNumber:	Number of pulses per revolution.

	sensorType:	1,2 or 3 according to the previous table.

	sensorPolarity:	a value between 0 and 3 describing the polarity
of sensors as stated before.

	Returns:

	

	OK:	A boolean if all went as expected or not.

readSensorConfig

	
readSensorConfig()

	Read the current sensor configuration

Requests from EPOS the current sensor configuration.
The sensorConfig is an struture containing the following information:

	sensorType - describes the type of sensor.

	pulseNumber - describes the number of pulses per revolution in
one channel.

	sensorPolarity - describes the of each sensor.

If unable to request the configuration or unsucessfull, an empty
structure is returned. Any error inside any field requests are marked
with ‘error’.

	Returns:

	

	sensorConfig:	A structure with the current configuration of
the sensor

	OK:	A boolean if all went as expected or not.

printSensorConfig

	
printSensorConfig()

	Prints the current sensor config.

readCurrentControlParam

	
readCurrentControlParam()

	Read the PI gains used in current control mode

	Returns:

	

	currentControlPIgains:

		a structure with P and I gains.

	OK:	A boolean if all went as expected or not.

setCurrentControlParam

	
setCurrentControlParam(pGain, iGain)

	Set the PI gains used in current control mode

	Args:

	

	pGain:	Proportional gain.

	iGain:	Integral gain.

	Returns:

	

	OK:	A boolean if all went as expected or not.

printCurrentControlParam

	
printCurrentControlParam()

	Print actual current control mode gains.

readSoftwarePosLimit

	
readSoftwarePosLimit()

	Reads the limits of the software position

	Returns:

	

	pos:	A structure with fields minPos and maxPos

	OK:	A boolean if all requests went ok or not.

setSoftwarePosLimit

	
setSoftwarePosLimit(minPos, maxPos)

	Set the software position limits

range : [-2147483648|2147483647]

	Args:

	

	minPos:	minimum limit.

	maxPos:	maximum limit.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

printSoftwarePosLimit

	
printSoftwarePosLimit()

	Prints software position limits.

readMaxProfileVelocity

	
readMaxProfileVelocity()

	Reads the maximum velocity of Profile modes.

This value is used as velocity limit in a position (or velocity)
profile mode

	Returns:

	

	maxProfileVelocity:

		the value of maximum velocity.

	OK:	A boolean if all requests went ok or not.

setMaxProfileVelocity

	
setMaxProfileVelocity(maxProfileVelocity)

	Set the maximum velocity of Profile modes.

This value is used as velocity limit in a position (or velocity)
profile mode

	Args:

	

	maxProfileVelocity:

		the value of maximum velocity.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readProfileVelocity

	
readProfileVelocity()

	Read the profile velocity.

The profile velocity is the velocity normally attained at the end
of the acceleration ramp during a profiled move [Velocity units]

	Returns:

	

	profileVelocity:

		The value of velocity.

	OK:	A boolean if all requests went ok or not.

setProfileVelocity

	
setProfileVelocity(profileVelocity)

	Set the profile velocity.

The profile velocity is the velocity normally attained at the end
of the acceleration ramp during a profiled move [Velocity units]

	Args:

	

	profileVelocity:

		The value of velocity.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readProfileAcceleration

	
readProfileAcceleration()

	Read the profile acceleration.

Defines the acceleration ramp during a movement.

	Returns:

	

	profileAcceleration:

		The value of acceleration.

	OK:	A boolean if all requests went ok or not.

setProfileAcceleration

	
setProfileAcceleration(profileAcceleration)

	Set the profile acceleration.

Defines the acceleration ramp during a movement.

	Args:

	

	profileVelocity:

		The value of acceleration.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readProfileDeceleration

	
readProfileDeceleration()

	Read the profile deceleration.

The profile deceleration defines the deceleration ramp during a
movement.

	Returns:

	

	profileDeceleration:

		The value of deceleration.

	OK:	A boolean if all requests went ok or not.

setProfileDeceleration

	
setProfileDeceleration(profileDeceleration)

	Set the profile deceleration.

The profile deceleration defines the deceleration ramp during a
movement.

	Args:

	

	profileDeceleration:

		The value of deceleration.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readQuickstopDeceleration

	
readQuickstopDeceleration()

	Read the quickstop deceleration.

Deceleration used in fault reaction state.

	Returns:

	

	quickstopDeceleration:

		The value of deceleration.

	OK:	A boolean if all requests went ok or not.

setQuickstopDeceleration

	
setQuickstopDeceleration(quickstopDeceleration)

	Set the quickstop deceleration.

The quickstop deceleration defines the deceleration during a fault
reaction.

	Args:

	

	quickstopDeceleration:

		The value of deceleration.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readMotionProfileType

	
readMotionProfileType()

	Read the motion profile type.

Motion profile type describes the type of trajectories used in
profile modes to generate the paths.

	Returns:

	

	motionProfileType:

		0 if linear ramp, 1 if sin^2 ramp.

	OK:	A boolean if all requests went ok or not.

setMotionProfileType

	
setMotionProfileType(motionProfileType)

	Set the motion profile type.

Motion profile type describes the type of trajectories used in
profile modes to generate the paths.

	Args:

	

	motionProfileType:

		0 if linear ramp, 1 if sin^2 ramp.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readPositionProfileConfig

	
readPositionProfileConfig()

	Read all parameters related to position profile configuration mode.

The parameters are stored in a structure with:

	maxFollowingError

	softwarePositionLimit

	maxProfileVelocity

	profileVelocity

	profileAcceleration

	profileDeceleration

	quickstopDeceleration

	motionProfileType

	Returns:

	

	positionProfileConfig:

		Struture with all parameters.

	OK:	A boolean if all requests went ok or not.

setPositionProfileConfig

	
setPositionProfileConfig(maxFollowingError, minPos, maxPos, maxProfileVelocity, profileVelocity, profileAcceleration, profileDeceleration, quickstopDeceleration, motionProfileType)

	Set all parameters related to position profile configuration mode.

	Args:

	

	maxFollowingError:

		max permissible following error

	minPos:	software limit minimum position

	maxPos:	software limit maximum position

	maxProfileVelocity:

		max velocity allowed in profile mode

	profileVelocity:

		velocity at end of acceleration ramps

	profileAcceleration:

		acceleration value at ramps up

	profileDeceleration:

		deceleration value at ramps down

	quickstopDeceleration:

		deceleration value at fault reaction

	motionProfile:	type of motion profiles to be generated

	Returns:

	

	OK:	A boolean if all requests went ok or not.

printPositionProfileConfig

	
printPositionProfileConfig()

	Print position profile configuration parameters

readTargetPosition

	
readTargetPosition()

	Read target position value.

The target position if the value in quadrature counts of desired value
to be achieved.

	Returns:

	

	position:	Target position value in quadrature counts.

	OK:	A boolean if all requests went ok or not.

setTargetPosition

	
setTargetPosition(position)

	Set target position value.

The target position if the value in quadrature counts of desired value
to be achieved.

	Args:

	

	position:	Target position value in quadrature counts.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

setPositioningControlOptions

	
setPositioningControlOptions(isRelativePos, changeNow, newSetpoint)

	Set position control options.
Position control options change how epos should react to a change in a
new target value. The flags are passed to the Controlword.
The behavior is described in the following table:

	Name
	Value
	Description

	isRelativePos
	0
	Target position is an absolute value

	1
	Target position is a relative value

	changeNow
	0
	Finish the actual positioning and then start
next positioning

	1
	Interrupt the actual positioning and start
the next positioning

	newSetpoint
	0
	Does not assume Target position

	1
	Assume Target position

	Args:

	

	isRelativePos:	A boolean if position is relative or absolute.

	changeNow:	A boolean if epos should wait for current movement
to end or start changing for the new position.

	newSetpoint:	A boolean if epos should assume target position or not

	Returns:

	

	OK:	A boolean if all requests went ok or not.

haltOperation

	
haltOperation()

	Stop current movement with halt deceleration.

	Returns:

	

	OK:	A boolean if all the requests went ok or not.

resumeHaltOpereation

	
resumeHaltOpereation()

	Resumes previous operation before an halt command was issued.

	Returns:

	

	OK:	A boolean if all the requests went ok or not.

readVelocityControlParam

	
readVelocityControlParam()

	Reads the parameters PI of the velocity control

	Returns:

	

	velocityControlPIgains:

		A structure with pGain and iGain.

	OK:	A boolean if all requests went ok or not.

setVelocityControlParam

	
setVelocityControlParam(pGain, iGain)

	Set the parameters PI of the velocity control

	Args:

	

	pGain:	the proportional gain.

	iGain:	the integral gain.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

printVelocityControlParam

	
printVelocityControlParam()

	Prints the velocity control parameters PI gains

readPositionControlParam

	
readPositionControlParam()

	Read position control PID gains and feedfoward velocity and
acceleration values.

	Returns:

	

	positionControlPIDgains:

		A structure with PID gains and feedfoward
velocity and acceleration values.

	OK:	A boolean if all requests went ok or not

setPositionControlParam

	
setPositionControlParam(pGain, iGain, dGain, vFeed, aFeed)

	Set position control PID gains and feedfoward velocity and
acceleration values.

Feedback and Feed Forward

PID feedback amplification

PID stands for Proportional, Integral and Derivative control parameters.
They describe how the error signal e is amplified in order to
produce an appropriate correction. The goal is to reduce this error, i.e.
the deviation between the set (or demand) value and the measured (or
actual) value. Low values of control parameters will usually result in a
sluggish control behavior. High values will lead to a stiffer control with the
risk of overshoot and at too high an amplification, the system may start
oscillating.

Feed-forward

With the PID algorithms, corrective action only occurs if there is
a deviation between the set and actual values. For positioning
systems, this means that there always is – in fact, there has to
be a position error while in motion. This is called following
error. The objective of the feedforward control is to minimize
this following error by taking into account the set value changes
in advance. Energy is provided in an open-loop controller set-up
to compensate friction and for the purpose of mass inertia acceleration.
Generally, there are two parameters available in feed-forward.
They have to be determined for the specific application and motion
task:

	Speed feed-forward gain: This component is multiplied by the
demanded speed and compensates for speed-proportional friction.

	Acceleration feed-forward correction: This component is related
to the mass inertia of the system and provides sufficient current
to accelerate this inertia.

Incorporating the feed forward features reduces the average following
error when accelerating and decelerating. By combining a feed-forward
control and PID, the PID controller only has to correct the
residual error remaining after feed-forward, thereby improving the
system response and allowing very stiff control behavior.

	Args:

	

	pGain:	Proportional gain value

	iGain:	Integral gain value

	dGain:	Derivative gain value

	vFeed:	velocity feed foward gain value

	aFeed:	acceleration feed foward gain value

	Returns:

	

	OK:	A boolean if all requests went ok or not

printPositionControlParam

	
printPositionControlParam()

	Print position control PID gains.

readFollowingError

	
readFollowingError()

	Read the current following error value which is the difference
between atual value and desired value.

	Returns:

	

	followingError:	value of actual following error.

	OK:	A boolean if all requests went ok or not.

readMaxFollowingError

	
readMaxFollowingError()

	Reads the maximum following error

The Max Following Error is the maximum permissible difference
between demanded and actual position at any time of evaluation.
It serves as a safety and motion-supervising feature.
If the following error becomes too high, this is a sign of something
going wrong: Either the drive cannot reach the required speed
or it is even blocked.

	Returns:

	

	maxFollowingError:

		The value of maximum following error.

	OK:	A boolean if all requests went ok or not.

setMaxFollowingError

	
setMaxFollowingError(maxFollowingError)

	Set the maximum following error

The Max Following Error is the maximum permissible difference
between demanded and actual position at any time of evaluation.
It serves as a safety and motion-supervising feature.
If the following error becomes too high, this is a sign of something
going wrong: Either the drive cannot reach the required speed
or it is even blocked.

	Args:

	

	maxFollowingError:

		The value of maximum following error.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readPositionValue

	
readPositionValue()

	Read current position value

	Returns:

	

	position:	current position in quadrature counts

	OK:	A boolean if all requests went ok or not.

readPositionWindow

	
readPositionWindow()

	Read current position Window value

Position window is the modulos threashold value in which the output
is considerated to be achieved.

	Returns:

	

	positionWindow:	current position window in quadrature counts

	OK:	A boolean if all requests went ok or not.

setPositionWindow

	
setPositionWindow(positionWindow)

	Set position Window value

Position window is the modulos threashold value in which the output
is considerated to be achieved.

	Args:

	

	positionWindow:	current position window in quadrature counts

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readPositionWindowTime

	
readPositionWindowTime()

	Read current position Window time value

Position window time is the minimum time in milliseconds in which
the output must be inside the position window for the target is
considerated to have been reached.

	Returns:

	

	positionWindowTime:

		current position window time in milliseconds.

	OK:	A boolean if all requests went ok or not.

setPositionWindowTime

	
setPositionWindowTime(positionWindowTime)

	Set position Window time value

Position window time is the minimum time in milliseconds in which
the output must be inside the position window for the target is
considerated to have been reached.

	Args:

	

	positionWindowTime:

		current position window time in milliseconds.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

readVelocityValue

	
readVelocityValue()

	Read current velocity value.

	Returns:

	

	velocity:	velocity in rpm.

	OK:	A boolean if all requests went ok or not.

readVelocityValueAveraged

	
readVelocityValueAveraged()

	Read current velocity averege value.

	Returns:

	

	velocity:	velocity in rpm.

	OK:	A boolean if all requests went ok or not.

readCurrentValue

	
readCurrentValue()

	Read current value.

	Returns:

	

	current:	the value of current in mA.

	OK:	A boolean if all requests went ok or not.

readCurrentValueAveraged

	
readCurrentValueAveraged()

	Read current average value.

	Returns:

	

	current:	the value of current in mA.

	OK:	A boolean if all requests went ok or not.

readHomeOffset

	
readHomeOffset()

	Read home offset position value.

	Returns:

	

	homeOffset:	position offset for home value.

	OK:	A boolean if all requests went ok or not.

setHomeOffset

	
setHomeOffset(homeOffset)

	Set home offset position value.

	Args:

	

	homeOffset:	position offset for home value.

	Returns:

	

	OK:	A boolean if all requests went ok or not.

save

	
save()

	All parameters of device are stored in non volatile memory. For that,
the code “save” is written to this object.

	Returns:

	

	OK:	a boolean if write was sucessfull or not.

 Copyright 2017, Bruno Tibério.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Maxon Epos Library 0.1 documentation

Index

 B
 | C
 | D
 | E
 | H
 | P
 | R
 | S
 | W

B

 	

 	begin()

C

 	

 	changeEposState()

 	checkEposError()

 	checkEposState()

 	

 	checkError()

 	CRCcalc()

 	CRCCheck()

D

 	

 	disconnect()

E

 	

 	Epos (built-in class)

H

 	

 	haltOperation()

P

 	

 	printControlWord()

 	printCurrentControlParam()

 	printMotorConfig()

 	printOpMode()

 	printPositionControlParam()

 	

 	printPositionProfileConfig()

 	printSensorConfig()

 	printSoftwarePosLimit()

 	printStatusWord()

 	printVelocityControlParam()

R

 	

 	readAnswer()

 	readBYTE()

 	readControlWord()

 	readCurrentControlParam()

 	readCurrentModeSetting()

 	readCurrentValue()

 	readCurrentValueAveraged()

 	readFollowingError()

 	readHomeOffset()

 	readMaxFollowingError()

 	readMaxProfileVelocity()

 	readMotionProfileType()

 	readMotorConfig()

 	readObject()

 	readOpMode()

 	readPositionControlParam()

 	readPositionModeSetting()

 	readPositionProfileConfig()

 	

 	readPositionValue()

 	readPositionWindow()

 	readPositionWindowTime()

 	readProfileAcceleration()

 	readProfileDeceleration()

 	readProfileVelocity()

 	readQuickstopDeceleration()

 	readSensorConfig()

 	readSoftwarePosLimit()

 	readStatusWord()

 	readSWversion()

 	readTargetPosition()

 	readVelocityControlParam()

 	readVelocityModeSetting()

 	readVelocityValue()

 	readVelocityValueAveraged()

 	readWORD()

 	resumeHaltOpereation()

S

 	

 	save()

 	sendCom()

 	setCurrentControlParam()

 	setCurrentModeSetting()

 	setHomeOffset()

 	setMaxFollowingError()

 	setMaxProfileVelocity()

 	setMotionProfileType()

 	setMotorConfig()

 	setOpMode()

 	setPositionControlParam()

 	setPositioningControlOptions()

 	setPositionModeSetting()

 	

 	setPositionProfileConfig()

 	setPositionWindow()

 	setPositionWindowTime()

 	setProfileAcceleration()

 	setProfileDeceleration()

 	setProfileVelocity()

 	setQuickstopDeceleration()

 	setSensorConfig()

 	setSoftwarePosLimit()

 	setTargetPosition()

 	setVelocityControlParam()

 	setVelocityModeSetting()

W

 	

 	writeBYTE()

 	writeObject()

 	

 	writeWORD()

 Copyright 2017, Bruno Tibério.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Maxon Epos Library 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, Bruno Tibério.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

